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Executive Summary 
 

This report is a state-of-the-art summary of the latest developments and issues in the 
application of advanced data analytics to food safety and authenticity, for improved 
system and consumer trust. The focus has been on identifying opportunities, barriers 
and enablers for the adoption of advanced data analytics by the food sector from the 
perspective both of private Food Business Operator (FBO) needs, and public-sector 
use and governance for the FSA as a food system regulator 

The investigation has combined a literature review and ‘live’ exchanges with experts 
in data analytics and food sector practitioners, conducted via a series of interviews 
and a policy Delphi. 

The report provides an overview of advanced data analytics methods, followed by a 
review of some applications of these methods reported in the recent research literature 
that were assessed to be of relevance to the FSA’s mission. While the literature on 
applications of advanced data analytics in food safety is extensive, not surprisingly, 
the evidence of their translation into practice is harder to find. In this respect, the 
progress already made by the FSA suggests that it is well-placed to achieve its goal 
of transforming its capacity as a food system regulator and be able to meet the 
challenges that lie ahead. 

We consider a number of issues that will need to be addressed if advanced data 
analytics are to be utilised in support of consumer interests and trust in UK food safety 
and authenticity. These issues are not specific to the FSA or, indeed, to the food sector 
in general. Instead, they are typical of those that any organisation/sector that is intent 
on using data analytics to innovate its processes must face. For some of these issues, 
such as explainability (which represents a major barrier at the moment), technical 
solutions can be expected to emerge within the next 2-5 years. Others, such as being 
able to share commercially sensitive data while preserving privacy demand, solutions 
and progress will depend on the capacity of stakeholders to reach agreement on 
principles of data governance, as much as on technical advances. 

The report concludes with a series of recommendations for taking forward the 
application of advanced data analytics within the FSA in the light of currently 
understood food safety and authenticity risks and the study team’s own understanding 
of FSA applications during the time of this review. These recommendations are then 
presented using a framework that is designed to help assess their readiness for 
developing and transitioning to operational deployment within the next 2-5 years. Data 
analytics methods are advancing at a very rapid pace, which makes it very difficult to 
assess their impact beyond the 2-5 year time frame of this review. 
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Glossary 
 

Artificial Neural Networks: a biologically inspired computational architecture that 
learns from training data how to perform a task. There are various types such as 
convolutional neural networks.  

Autoregressive Integrated Moving Average (ARIMA): a model fitted to time series 
data to better understand the data and aid forecasting.  

Bayesian Decision Theory: a decision framework, informed by Bayesian probability, 
that aims to minimise some total expected risk that is pre-defined.  

Bayesian Networks: a type of probabilistic graphical model that represents a set of 
variables and their conditional dependencies through the ‘nodes’ and ‘edges’ of a 
network.  

Chain Event Graphs: an extension of Bayesian Network techniques where ‘nodes’ 
represent events and event trees are the underlying graphical model.  

Cluster Analysis: grouping objects according to a common shared attribute(s). 

Convolutional Neural Networks (CNNs): a type of deep neural networks primarily 
used in image recognition.   

Error, Trend, Seasonality (ETS) Models: a time series modelling technique utilising 
exponential smoothing.  

Food Business Operator (FBO): The natural or legal persons responsible for 
ensuring that the requirements of food law are met within the food business under their 
control. 

Gaussian Processes: a probability distribution over possible functions and is an 
algorithm that can be used to carry out regression or classification when estimating an 
unknown function.  

Geary’s C: a correlation coefficient that measures the overall spatial autocorrelation 
in data. Autocorrelation measures how one object is similar to others surrounding it 
and so is used in spatial analysis methods and geographic information science 

Graph-based Methods: a family of tools for analysing the behaviour of systems that 
have a natural network representation. This includes looking for recurring patterns or 
anomalies.  

Kriging: a Gaussian process regression method that is particularly used in spatial 
analysis. 

Monte Carlo Methods: a broad class of computational algorithms that rely on random 
sampling to obtain numerical results and allow for the modelling of complex situations 
when there are many random variables involved and assessing the impact of risk.   

Moran’s I: a correlation coefficient that measures the overall spatial autocorrelation in 
data. Autocorrelation measures how one object is similar to others surrounding it and 
so is used in spatial analysis methods and geographic information science. 

Natural Language Processing (NLP): the application of computational techniques to 
the analysis and synthesis of natural language and speech.  
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Nowcasting: a forecasting method that aims to predicts variables in time ahead of the 
delay in the release of official data and statistics e.g. macroeconomic data or trade 
data.  

Random Forest: an ensemble learning method for classification, regression and other 
tasks that operate by constructing a multitude of decisions trees and outputting the 
mode of the decision trees or the mean of a regression prediction.  

Seasonal Autoregressive Integrated Moving Average (SARIMA): a model fitted to 
time series data that accounts for seasonal trends, to better understand the data and 
aid forecasting.  

Self-Organising Map: a type of artificial neural network that is trained using 
unsupervised learning to produce a representation of the training data.  

Support Vector Machines: a supervised learning model that is used for classification 
and regression analysis.  

Time Series: a series of data points indexed in time order. Often used for pattern 
recognition in temporal data as well as for forecasting and analysis to extract 
meaningful statistics.   

User Generated Content: content created by people/users rather than a brand e.g. 
social media posts. 
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Aims and Objectives of the Investigation 
 

The aim of the investigation was to provide the Food Standards Agency (FSA) with a 
state-of-the-art summary of the latest developments and issues in the application of 
advanced data analytics to food safety and authenticity. It is expected that the findings 
will be used to support the FSA in achieving its goals, i.e., “strategic prioritisation and 
translation of risks and opportunities” as it seeks to understand what steps “a 
competent central regulator” should be taking to advance its capabilities.  

To achieve this aim, the report covers analytical method(s) that have reached a 
sufficiently mature stage of development that are likely to be available within the next 
2-5 years to assist the FSA achieving its goal of delivering a safe and authentic UK 
food system. The objective is to better understand applications of analytical methods 
that are feasible now, and more challenging applications that are may be 
transformative in the near future and therefore worth considering further R&D. 

 

Methodology 
 
The project methodology consisted of three inter-related activities that were conducted 
in a six-month period between October 2019-March 20201.  

Literature review: This was performed as part of the preparation for the subsequent 
interviews and policy Delphi. The aim was to (a) familiarise the project team, as 
technical experts, with the context of the FSA’s work, including current understanding 
of food safety and authenticity risks, practices for monitoring them, and to identify key 
informants for the subsequent stages; (b) summarise emerging data methods and 
match the analytical/technological opportunities they represent against known and 
foreseeable food sector pressures, including examples of applications from other 
sectors that might be transferable to the food sector. 

Semi-structured interviews: Issues identified by the literature review were then 
followed up in a series of interviews with key informants. An initial list of interviewees 
was drawn up following consultations with FSA staff. This was supplemented by 
people identified through the literature review and suggestions from interviewees 
themselves. The interviews covered the following issues: 1) food safety and 
authenticity challenges; 2) applications of advanced data analytics to address these 
challenges. A total of thirty two people were interviewed: nine members of (a) the FSA 
and public sector organisations with interests in food safety; (b) twelve academics 
working on food safety research and/or in advanced data analytics; (c) eleven 
representatives of FBOs and professionals working for other bodies involved in food 
safety. Interviews were recorded and transcribed for subsequent analysis.  

Policy Delphi: Interviews were followed by a policy Delphi (Appendix B), whose remit 
was to establish a consensus on recommendations for themes identified following 
analysis of the interviews. The policy Delphi is a well-established method for targeted 

 
1 Consultation with the FSA Data Team took place between October and November 
2019. Several FSA Proof of Concept and Sprint projects have advanced since that 
time, in part resultant from COVID-19. 
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consultations with experts to identify consensuses for recommendations. Panellists 
take part in iterative rounds of deliberation, beginning with an initial questionnaire. 
Responses are synthesised and returned to panellists for a final round of evaluation. 
The method is designed to elicit the breadth of views that exist amongst informed 
respondents about a subject and consequently to maximise foresight about 
developments in this sector.   

Prospective panelists from a long list drawn up following interviews were contacted 
and 19 (56%) responded, generating a panel that falls within the 10 – 50 range of 
respondents acknowledged by methodologists as sufficient to run a meaningful 
deliberation [1]. Of the 19: 

• 1 was recruited from a Non-Governmental Organisation concerned with 
facilitating collaboration between government, business and academia in 
addressing issues of food safety; 

• 2 were recruited from digital commercial organisations concerned with 
promoting the uptake of digital technologies by government and business; 

• 2 were recruited from the government’s food safety regulator; 

• 7 were recruited from food business organisations concerned with the safety of 
food produce and its retail; and, 

• 7 were recruited from academia and involved in researching trends in food 
safety. 

Questions were defined for round 1 of the policy Delphi from the literature review and 
interviews and invitations sent to participants. Based on these responses, a second 
round of questions were distributed, and 14 responses were received. A summary of 
the findings can be found in Appendix B. 

Ethical approval was received from the University of Warwick, Biomedical and 
Scientific Research Ethics Committee. 

 

Summary of Food Safety and Authenticity Risks 
 

Food safety and authenticity risks within the global food system are continually being 
shaped by a range of factors. The way the food system adapts will impact on known 
risks and potentially give rise to new risks or new sources of risk. Evidence from the 
literature, interviews and the policy Delphi were used to identify major food safety and 
authenticity challenges that the UK food sector is likely to face over the next 2-5 years. 
Below, we summarise these under four overarching and interrelated themes: 

• Environmental pressures;  

• Changing consumer trends; 

• Complexity of food supply chains; and, 

• Sector governance and regulation. 

These themes reflect a range of underlying factors that are already evident or where 
the consensus is that they are likely to impact our food system within this period. 
Underlying factors of significance include: 
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• The global food system is exposed to “shocks” whose effect will be to undermine 
the resilience of the food supply chain, especially where these rely on just-in-time 
production and delivery [2]. These shocks range from growing geopolitical 
instability impacting on, e.g., shipping/trade routes, to pandemics with potential to 
impact across the whole food supply chain, as in the case of COVID-192. 

• Regulatory divergence and increased pressure on the delivery of the UK food 
safety regulatory system. One important example is regulatory systems not 
keeping pace with new business models, e.g. ‘dark kitchens’ and ‘cloud kitchens’3, 
online retail of food stuffs [3].  

• Strain amongst food producers and traders facing multi-faceted pressures could 
lead to an increase in compromising practices. Also, increasingly, organised crime 
is infiltrating the food sector as a way of legitimising other illicit activities. This leads 
to for example, counterfeiting and tampering of food produce, economic 
adulteration and illegal labour practises [4]. 

• The growing global population and demand for food stuffs in increasingly 
competitive markets raises prices. This can stimulate economic adulteration, along 
with other fraudulent practices as producers and traders seek to cut costs [5]. 

• Climate-driven changes in food supply chains may force break-up of trading 
relationships and increase reliance on more geographically diverse (and possibly 
less transparent) suppliers [6]. 

• Changing consumer demands leading to product changes, including mass 
customisation. This creates pressures in production environments and increases 
risks of cross contamination, which is also a greater risk for food hygiene and 
allergen control, when food sensitivity and allergic reactions [7] are increasing in 
the UK population.  

• Reducing our environmental footprint. New risks may accompany consumer 
demands to minimise plastic usage in packaging and changing consumption 
patterns, ranging from switch to plant-based diets, artisanal produce and novel 
products e.g. lab-grown proteins, insects, etc. [8, 9]. 

 

 

 

  

 
2 The COVID-19 emergency broke during the second round of the Policy Delphi and, 
consequently, several references to its early potential impact were made in responses 
to the second-round questionnaire (see the final report of the Policy Delphi in Appendix 
B). However, this project has not reviewed the impact of COVID-19 on food sector 
data systems and how it may have advanced the application of data analytics, given 
the need for responsive ‘situational awareness’. 
3 Kitchens that do not have a traditional consumer facing service and produce meals 
exclusively for delivery. 
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Overview of Data Analytics Methods 
 

Advanced data analytics covers a multitude of approaches commonly, if not always 
accurately referred to as Artificial Intelligence (AI). Data analytics paradigms can be 
classified into three basic types: supervised learning, unsupervised learning4 and 
reinforcement learning. Supervised learning requires a training dataset of known 
examples of the phenomenon of interest (i.e. a labelled dataset). Examples of 
supervised learning methods include Bayesian methods, Decision Trees and Random 
Forests, Artificial Neural Networks (ANNs). As its name suggests, unsupervised 
learning does not require a training dataset and so can discover unknown patterns in 
data. Some examples are clustering methods, Self-Organising Maps Spectral 
methods and Spatial Correlation. Like unsupervised learning, reinforcement learning 
also does not rely on training datasets. Instead, the system (‘agent’) learns by 
interacting with its environment, optimising its behaviour from the responses it 
generates. 

 

Bayesian Methods are well-established in industry and academia for inferring risk 
and modelling decision making processes. Good statistical methodologies have their 
Bayesian analogues and code is available via software libraries such as R. 

Bayesian Decision Theory provides a formalism for decision making under 
uncertainty. Bayesian statistics are used to estimate the expected value of different 
actions and update expectations based on new information. The method can be used 
to aid decision making processes when trying to identify best courses of action during 
an incident or to pre-emptively prepare for incidents [10].  

Bayesian Networks capture causal relationships in a probabilistic, graphical 
framework. They provide rigorous quantification of risks and decision modelling, and 
clear communication of results. Bayesian Networks have been utilised for risk 
assessments in health [11], manufacturing processes [12] and for issuing early 
warnings of natural hazards [13].  

Chain Event Graphs are a recent and more powerful development of Bayesian 
Networks, allowing modelling of a chain of circumstances leading to an event and 
modelling of highly asymmetric decisions or processes [14]. Chain Event Graphs are 
already a viable tool for small scale problems, software is available through CRAN5 
and applications are now beginning to appear. However, finding ways of scaling up 
model selection procedures so that Chain Event Graphs can provide real time analysis 
for problems with more than 15 variables is a major challenge. New tools are currently 
being developed to manage this problem, but they are unlikely to be ready for 
operational deployment within the next 2-5 years. 

All Bayesian methods need a prior, which quantifies the belief in the probability of 
some event in advance of new information being available. This can be elicited from 
domain experts. If this is not possible, computational techniques, such as Gaussian 

 
4 Semi-supervised learning, which falls in between supervised and unsupervised 
learning, combines a small amount of labelled data with a large amount of unlabelled 
data during the training phase. 
5 https://cran.r-project.org/web/packages/ceg/index.html 

https://cran.r-project.org/web/packages/ceg/index.html
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process methods, can be used instead. As new information becomes available, priors 
can be updated and then used to refine the parameters of the underlying mathematical 
model of the process.  

 

 

Decision trees are a very well-established and widely used supervised learning 
method of model building [15]. One of their advantages is that it is easy to extract rules 
that explain the behaviour of the model. Random forests are a development of decision 
trees that improve their accuracy [16].  

Graph-Based Methods are a family of powerful tools for analysing the behaviour of 
systems that have a natural network representation. They can be used, for example, 
to detect anomalous patterns in networks that may be signals of unusual or suspicious 
behaviour. Spectral methods are emerging as particularly effective approaches that 
are also computationally efficient [17]. Network techniques have also been used to 
simulate the likelihood and spread of diseases in livestock and how best to 
control/intervene, through the routine collection of livestock movement data [18]. 
Social network analysis techniques have been used to model the transmission 
pathways of highly communicable diseases such as norovirus [19]. 

Artificial Neural Networks (ANNs) are another family of machine learning methods 
with a diverse range of applications. Deep learning methods (e.g., convolutional and 
recurrent ANNs), which are variants of multi-layer ANNs, are finding application within 
all three machine learning paradigms and offer significant performance improvements 
in applications such as machine translation [20], image classification [21] and speech 
recognition [22]. Self-Organising Maps are another type of ANN that has proven useful 
for dimensionality reduction, where non-significant variables are eliminated. 

Natural Language Processing (NLP) covers a wide range of techniques for the 
extraction of information from unstructured data. Applications include opinion mining 
[23], event detection [24] and rumour verification [25]. NLP is one area of advanced 
data analytics where deep learning (i.e., convolutional and recurrent ANNs, including, 
Long-Short Term Memory (LSTM)) is making a significant impact [26]. Recent 
advances also include using word embeddings to improve information extraction by 
capturing the semantic similarities between words [27]. 

Spatial Processes, where patterns are studied within a spatial context, are an 
extremely well-studied and utilised model in areas such as public health [28]. Spatial 
patterns and correlations play a vital role in epidemiological processes [29] and in 
human geography [30]. Examples of methods for finding patterns and correlations in 
spatial data include Moran’s I or Geary’s C [31]. Once spatial patterns have been 

Explainability refers to the capacity of a machine learning model to 
make its behaviour transparent or understandable to its users. ‘White 
box’ methods such as decision trees and Bayesian methods have 
good explainability, whereas ‘black box’ methods such as ANNs and 
deep learning techniques generally do not. Explainability is 
increasingly recognised as a key requirement if data analytics tools 
are to be trusted by their users as aids in decision-making tasks [77]. 

 

Box 1: Explainability and machine learning 
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identified, more advanced analytics can be performed, such as Kriging methods, 
which utilise gaussian processes to aid prediction by taking into account the spatial 
structure of the data and then perform spatial interpolation [32]. Using travel data 
combined with population demographics and pathogen information one can predict 
the risk and introduction site of exotic plant, human and animal pathogens. A risk 
ranking can then be used to develop pathogen surveillance programs [33]. 

 
Monitoring of Food Safety and Authenticity Risks and the 
Application of Advanced Data Analytics 
 

The FSA collaborates with enforcement partners in Local Authorities and Port Health 
Authorities to acquire sampling and compliance data from inspections and testing of 
food commodities as they enter and travel through the UK food supply chain. Local 
Authorities also conduct inspections of restaurants, takeaways and food retailers for 
compliance with hygiene directives. However, with Local Authority resources under 
pressure, this regulatory delivery system is under significant strain, which emphasises 
the importance of being able to prioritise resources. Inspections and testing are costly, 
so the effectiveness of the system depends on inspections being targeted where there 
is likely to be the greatest risk. Testing also takes time, which may limit the 
effectiveness of any mitigation measures such as recalls, particularly for the last-
minute supply chains for many perishable goods. A recent NAO report found that 
spending by local authorities on food inspections has fallen in the past decade by 20%. 
While the number of food hygiene inspections were broadly stable, authenticity checks 
fell significantly during this period [34].  

Two conclusions follow from this: first, inspections need to be driven by intelligence 
that enables the accurate identification and analysis of risk, where possible before it 
has entered the UK food system i.e. includes predictive capability; second, intelligence 
capacity needs to be available at key intervention points throughout the food supply 
chain.  

The FSA Strategic Surveillance team has trialled the use of a range of new data 
analytics techniques for the identification of risk through its ongoing programme of 
‘Proof of Concept’ (PoC) and ‘Sprint’ projects (see Appendix A).  

In this section, we review where advanced data analytics are likely to have the greatest 
impact towards the FSA achieving its objectives. 

 

The use of social media as an ‘observatory’ is a well-known surveillance technique, 
which has been applied in the early detection of a wide range of incidents and events 
[35], as two FSA PoC projects have illustrated. However, the noisy character of social 
media makes information extraction difficult to achieve with an acceptable level of 
accuracy. Recent advances in NLP-based information extraction techniques are 
beginning to deliver more robust performance [36-37]. 

Food processing plants, such as abattoirs provide a key intervention point for many 
food safety and authenticity risks. Sensor technologies in abattoirs, may offer the 
opportunity to augment safety inspections but also improve for example animal welfare 
standards. Recent work has utilised deep learning methods to analyse audio signals 
and one application has been in bioacoustic monitoring of animal welfare in farms [38] 
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and abattoirs [39]. Convolutional ANNs have been applied to image data to recognise 
animal behaviour from video data [40-41] and to determine the quality and safety of 
meat products [42]. 

Food fraud (intentionally debasing the quality of food offered for sale either the 
admixture or substitution of inferior substances or by removal of some valuable 
ingredient) typically exploits vulnerabilities earlier in the food supply chain. Several 
different techniques have potential here, and some of these feature in the FSA’s data 
science team’s own work in this area. 

The ISAR (Import Screening for the Anticipation of Food Risks) tool, developed for the 
Bavarian State Office of Health and Food Safety, uses import/export data from 2400 
different food items to build seasonal, time series analysis models for inferring food 
commodity fraud risk [43]. On the available evidence, it appears to have been 
validated on just two cases of food fraud (melon seeds and hazelnuts). FSA data 
science team engaged with the Bavarian State Office of Health and Food Safety in the 
development of ISAR, and this translates to its own work on Risk Likelihood and Signal 
Prioritisation Dashboards.  

Random forests have been applied to predict supply chain disruptions, which can then 
be used to infer the likelihood of criminal activity [44]. Monte Carlo simulations have 
been used to explore different scenarios in order to determine best course of actions 
and see possible effects of different mitigation strategies [45]. Reinforcement Learning 
and Monte Carlo control have also been utilised to develop context dependent 
response policies for disease outbreaks.  

Graph-based methods have demonstrated their value for the study of the behaviour 
of food trade networks [46]. They have also been used to study the impact of shocks, 
such as COVID-19, on food trade networks and the associated policy implications [47]. 
Recent work has applied graph-based methods to the identification of food 
commodities at risk of fraudulent behaviour6. Analysis of network structure can provide 
information on how food safety risks may propagate across the supply chain and can 
be used, for example, to determine the source of a foodborne disease outbreak [48].  

Image data, including satellite imaging is widely used to monitor the condition of food 
commodities at source. Self-organising maps have been used to predict fungal 
infections in herbs [49] and disease in wheat [50]. Support vector machines (a type of 
ANN) have been used to aid image recognition of parasites and pests in strawberry 
greenhouses [51] and seed borne disease in rice [52]. Deep learning methods such 
as convolutional ANNs have been used for plant disease detection and diagnosis [53]. 
ANNs have been used with satellite imagery and soil data to predict yield of crops [54] 
and large food retailers are now deploying such techniques on a range of 
commodities7.  

Large food retailers are using data harvested from the Web to pick up trends that might 
indicate increased risks, such as triggers for a poor crop yield that might incentivise 
adulteration or falsification in/of the country of origin. Other applications of advanced 
data analytics include monitoring certification compliance. For example, Oceanmind 

 
6 Interview with Data scientist, November 2019. 
7 Interview with large food retailer. 
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uses satellite imagery and vessel monitoring systems to check whether fish catches 
comply with MSC certification, something that was previously impossible [55]. 

The falling costs of whole-genome sequencing (WGS) technologies is leading to its 
increasing use by large food retailers and government agencies [56]. Applications 
include investigation of foodborne outbreaks and surveillance to delineate local, 
regional and global genomic epidemiology of pathogens and to attribute the infection 
source. For example, WGS has been used by Public Health England to trace a 
Salmonella outbreak to a single egg producer [57]. Machine learning is now being 
used to accelerate the WGS analysis process. For example, Trace Genomics8 uses 
machine learning applied to the soil microbiome to test for pathogens, yield 
productivity and overall soil health. Bayesian methods have been employed to 
determine disease likelihood in crops and animals [58]. Machine learning on WGS 
data also has applications in food manufacturing, where indigenous bacteria can 
hamper pathogen detection and limit shelf life [59]. 

Tracing the source of foodborne disease outbreaks and determining their likely impact 
are key for devising mitigation strategies [60]. A Random Forest classifier has been 
used to model the different molecular structures that characterise the different 
Salmonella strains with differing strengths, impacts and severities [61]. Gradient 
boosted tree models have been applied to genomic data to predict the antimicrobial 
resistance of pathogens [62].  

Deriving predictive knowledge from genome data is still a nascent field and it has 
primarily been used for taxonomic and comparative purposes. It should also be 
stressed that access to well-curated genomic databases is essential in all these 
applications [63].  

‘Horizon scanning’ is an important tool for early warning of unanticipated or hitherto 
unknown risks. The European Food Safety Authority (EFSA) has developed the 
Emerging Risks Identification Support System (ERIS), which utilises information 
extraction from a range of sources, including the scientific literature, to support the 
early detection of emerging safety risks in supply chains [64]. To the best of our 
knowledge, to-date, ERIS has been tested on just two fish farming supply chains.  

The United Nations Food and Agriculture Organisation (FAO) EMPRES Global Animal 
Disease Information System (EMPRES-I) also aggregates and extracts information 
from a range of sources, including national and regional reports and databases, to 
provide search-based services on animal diseases [65]. 

 

  

 
8 https://tracegenomics.com/ 

https://tracegenomics.com/
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Challenges for the Adoption of Advanced Data Analytics 
 

Analysis of the information gathered reveals a number of distinct challenges that the 
FSA will need to address if it is to progress its use of data analytics in food safety and 
authenticity risk monitoring. 

Datasets 

The key to the success of data analytics is the availability of datasets that are 
appropriate to the task at hand, are of good ‘quality’ and are accessible in a timely 
way.  

Data quality covers a diverse set of issues, including missing data, anomalous values, 
source integrity, non-standard formats and non-stationarity (i.e. changes in data 
properties). These issues are not specific to data analytics but may become more 
challenging to deal with in this context. This is particularly the case for so-called ‘big 
data’, where factors such as volume, heterogeneity and velocity (i.e. speed of arrival) 
may mean that established procedures for ensuring data quality may not scale well. 
We pick up some of these issues below, but a comprehensive review is beyond the 
scope of this report. 

The FSA commonly uses open data sources, such as administrative records from 
trade databases or climatic data. Administrative data has proven of value in a number 
of applications (e.g. analysing trade patterns) but can be less useful for rapid-response 
risk surveillance, if potentially by the time data is available, fast-moving supply chains 
may mean consumers have been exposed to the identified risk. Data on financial 
transactions is emerging as a potentially valuable source for detecting food crime 
using techniques such as anomaly detection but getting FBOs to agree access is 
problematic. Government departments such as HMRC also hold potentially valuable 
data, but progress on inter-departmental data sharing can be similarly complex.  

Problems in finding and getting access to datasets in a timely way came up frequently 
in interviews and in Delphi panellists’ responses. The meaning of ‘timely’ is, of course, 
dependent on the use being made of the data and the time window for effective 
mitigation should a problem be detected. In general, that time window is narrow in the 
food supply chain. One example where the timeliness requirement is not currently 
satisfied is the monitoring of trade flows: the data held by Comtrade9, which is a UN 
International Trade Statistics Database, has a lag of 3 months and sometimes much 
longer, making it unsuitable for the early prediction of food fraud or where there is an 
abrupt change of conditions, such as in the COVID-19 pandemic. One way to 
circumvent this kind of timeliness problem is to use nowcasting10 methods as a way 
of providing an estimate of the data before its release (see Box 2) [66-7].  

While there is no doubt that more and more valuable data is being generated as a by-
product of the food supply chain, the problem that remains for the FSA is securing 
access to it. Though not fundamentally addressed by it, still requiring permission 
agreements, it is possible data access may be improved by the advent of ‘digital twins’. 

 
9  https://comtrade.un.org/ 
10 i.e. predicting a current value rather than a future one. 

 

https://comtrade.un.org/
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The aim of which is to use ‘Internet of Things’11 (IoT) technologies to create a digital 
replica of the food supply chain and may help remove the ‘burden’ of some information 
exchange. While this is technically possible as a proof of concept, there are many 
challenges to be overcome before this is likely to be realised in practice: as Delphi 
panellist observed, the food supply chain is fast moving, rapidly changing and 
extremely complex. 

 

 

Among these challenges are standards to ensure data quality and interchange (see 
below), interoperability of devices and mechanisms to reduce risks of data tampering 
and fraud. For the FSA, access to data from within the food supply chain would be 
transformative for the early detection of a range of food safety and authenticity risks. 

Standardised procedures and formats for collecting and recording data will be 
essential if data from different sources is to be aggregated and linked easily, and the 
effort expended on data preparation minimised [69]. However, these are often not yet 
in place and will take time to agree. It is also important to bear in mind that, while it 
may be technically possible to guarantee data integrity once input, verifying integrity 
at source remains a problem with no obvious technical solution. For example, if the 
sources are sensors, human oversight will be needed to verify they are being deployed 
appropriately.  

Because of its commercial sensitivity, FBOs have often been reluctant to share much 
of their data. However, there are some modest signs of progress. For example, in the 
past six months, the FSA’s National Food Crime Unit (NFCU) and FSS (Food 
Standards Scotland) have gained access to sampling data provided through the Food 
Industry Intelligence Network (fiin)12, which is a body set up by major UK FBOs, 
including retailers, manufacturers and service companies to share intelligence on food 

 
11 Networked devices capable of sensing, sending and receiving data.12 
https://www.campdenbri.co.uk/news/fiin.php 
12 https://www.campdenbri.co.uk/news/fiin.php 

Many official datasets have significant delays in the publishing of 
new data, which limits their value in a number of application areas. 
The use of nowcasting techniques to provide estimates of current 
values, offers a potential solution to this problem and have proved 
their value in, for example, public health planning and control 
applications [68]. 

User Generated Content (UGC), such as social media and internet 
search logs, are examples of new data sources that have 
nowcasting potential as they are high-frequency, real-time and 
may be reasonably easy to harvest. However, some UGC is also 
very noisy, making it challenging to extract a good signal.  

It should be noted that, as always in nowcasting, there is a trade-
off between timeliness and robustness. 

Box 2: Nowcasting 

https://www.campdenbri.co.uk/news/fiin.php
https://www.campdenbri.co.uk/news/fiin.php
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authenticity and traceability. fiin is currently developing web-based, a cloud-based 
platform for sharing data between its members.  

UGC is another potentially valuable new source of data. The COVID-19 pandemic has 
exposed public concern about the collection of personal data, even where there may 
be a strong policy case for doing so, reinforcing the importance of openness with the 
public where data sources may contain identifiable personal information. 

Data preparation absorbs a lot of time and resources in any data analytics project and 
this can be further exacerbated by any lack of agreed data standards, which is a 
common problem with trade data for example. ‘Data wrangling’, i.e., dataset cleaning, 
preparation, organising, integrating, etc., has been estimated to take up to 60% of the 
time to deliver a data analytics project [70]. 

Some new data sources may pose significant quality challenges. UGC, for example, 
is often very ‘noisy’. Problems may arise even when dealing with well-curated datasets 
that are of good quality, such as that from the International Food Safety Authorities 
Network (INFOSAN) and other administrative sources. In addition, some Delphi 
panellists expressed doubts about the quality of data that may be sourced from FBOs 
unless they are incentivised or legally obliged to do so. 

When developing new data analytics applications, datasets of known value (e.g., trade 
flows, etc.) will need to be assessed for their quality, granularity and timeliness and 
the value of new sources of data evaluated. Feature engineering, the process through 
which attributes of datasets relevant to a specific application are identified, remains a 
largely manual exercise. Supervised data analytics methods require training data, 
which may be difficult to obtain and costly to generate. 

The Artificial Intelligence for Data Analytics (AIDA) project at The Alan Turing Institute 
(ATI) is starting to develop some practical ways to reduce this effort but this and other 
projects are still in the early stages of delivering production-ready solutions [71]. The 
AIDA project has also developed a framework for thinking through the main issues of 
data wrangling.  

Technical Infrastructure 

More advanced data analytics methods and potentially huge volumes of data will make 
greater demands on compute and data infrastructure. In general, compute 
requirements are greatest at the model building stage but are much lower when 
models are subsequently deployed. For this reason, on-demand, scalable services 
offered by cloud computing have become the preferred option for many data analytics 
applications [72].  

Distributed Ledger Technology (DLT) (often known as Blockchain, though this is just 
one version of DLT) has been proposed as the solution to the needs of FBOs, 
regulators and consumers for traceability within the food supply chain [73]. A key 
principle of DLTs is that a record should be immutable once added to the ledger, thus 
guaranteeing record integrity. However, the computational requirements for 
guaranteeing immutability in so-called “trustless” DLTs limit the rate at which records 
can be added. While this may not be a problem for low volume transactions, it makes 
them impractical at present for applications requiring a high record transaction rate 
[74]. Adopting a “layered” approach to DLT architecture may provide a solution to this 
problem [75]. However, it should be noted that there may also be issues about data 
privacy in trustless DLTs, where participants may be in competition with one another, 
a point emphasised by policy several Delphi panellists. One further note of caution 
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relates to the proliferation of different architectures for DLTs, which is very likely to 
lead to interoperability problems in the future, with the risk that data becomes siloed 
[73].  

Data trusts, i.e. “a legal structure that provides independent stewardship of data” [76] 
offer a socio-technical solution to these problems: participants agree who is allowed 
to add records to – and read records in – the ledger. Naturally, reaching agreement 
on which participant(s) are to be trusted in this way may not be straightforward. It 
should also be noted that relaxing this core principle makes the advantages of DLTs 
over a centralised, encrypted database less clear, with the advantage that data trusts 
can be agnostic about the choice of the underlying technology. The Open Data 
Institute (ODI) has undertaken a number of data trust pilot studies, including one with 
Food and Drink Manufacturers and the FSA is currently collaborating with the Internet 
of Food Things Network (IoFT) on an additional Proof-of-Value project. While Delphi 
panellists generally agreed on the technical feasibility of IoFT (subject to 
interoperability standards being agreed), several commented on potential barriers to 
adoption, including industry concerns about cost and surveillance.  

 

 

Type 1 tools provide facilities (a “dashboard”) to visualise quantitative, 
time series data of known value for analysis. Deriving insights relies on the 
user’s expertise in understanding the significance of the patterns revealed 
by the dashboard. An example is the FSA PoC project “Understanding 
olive oil trade patterns”.  

Type 2 tools visualise information extracted from unstructured data. An 
example is the FSA PoC project “Understanding allergy related 
discussions using social media”. These tools serve as an “observatory” by 
providing a count of mentions of known allergens. Another example is the 
FSA PoC project “Food/hazard extraction from media articles”, which uses 
information extraction from mainstream news media. The distinction 
between Type 1 and Type 2 tools stems from the latter’s information 
extraction step; the data generated is typically less reliable and thus 
requires greater effort in its interpretation.  

Type 3 tools add a simple and well-understood predictive model to the 
basic dashboard capability. An example is the FSA PoC project “Predicting 
Vibrio infections from climate data”, which uses the known correlation 
between surface sea temperatures and Vibrio infection rates to highlight 
periods of increased risk. 

Type 4 tools lack an explicit model of the underlying phenomenon and so 
use data analytics to learn (induce) one. For example: the FSA is currently 
conducting a PoC project to explore applying deep learning tools to model 
safety risks in restaurants and drive ‘intelligent’ inspections; the FSA has 
also completed a project to predict aflatoxin risks. Another example is 
learning models to detect “Unregistered food businesses”. 

A list of FSA PoCs and sprint projects (as of November 2019) can be found 
in Appendix A. 

Box 3: A taxonomy of data tools and their explainability characteristics 
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Explainability 

The FSA data science team has found that users are don’t like tools they perceive to 
be ‘black boxes’, i.e. whose behaviour is difficult to understand. This is consistent with 
views expressed by interviewees and in a recent report from ATI on ethical frameworks 
for AI [77], which states that explainability (Box 1) is a key requirement for the 
successful application of data analytics. More broadly, the ATI report argues that 
explainability is one part of a range of requirements that applications of data analytics 
should satisfy if their use is to be transparent and fair. 

Given the current state of the art in explainable AI (xAI), this would limit the use of data 
analytics tools to those that have either: (a) been developed around known causal 
models (e.g., vibrio incidence); or (b) where a causal model may be derived either 
through (i) a priori knowledge elicitation process with experts or (ii) a post-hoc 
knowledge elicitation from models learned from data. This therefore places limits on 
the current value of some more advanced deep learning analytics. While how to 
incorporate explainability into this latter class of methods is a very active area of 
research, with contrastive and counterfactual techniques among the most promising 
lines of investigation [78-9], viable techniques are still some way from being identified.  

Box 3 is a taxonomy of data analytics based on their inherent explainability 
capabilities. Based on this, the low explainability barrier of Type 1-3 tools make them 
good candidates for “low hanging fruit” applications. In contrast, explainability 
techniques are not yet available for Type 4 tools, making their deployment problematic, 
at least in the near term. 

Skills 

The rapid pace of the development and adoption of data analytics is already beginning 
to make its presence felt in the jobs market in the UK and globally, with shortages of 
skilled people widely reported [80], a point reinforced by many Delphi panellists. As it 
considers how to increase data analytics capability and capacity, the FSA, like other 
public sector organisations, will face stiff competition from private sector businesses.  

Change Management 

On the balance of the evidence available, the automation food safety and authenticity 
risk decision-making is an unlikely and undesirable outcome of the adoption of 
advanced data analytics. The users of these new analytics tools will need training and 
the opportunity to discover their strengths and weaknesses if they are going to be able 
to employ them effectively. Decision-making procedures are also likely to have to 
adapt if the FSA is to be able to manage and respond in a timely and effective manner 
to a growing volume of risk signals. We are aware that the FSA data science team is 
putting significant effort into change management as its projects move on from the 
PoC stage into deployment. Embedding new technologies within organisations takes 
time and so it will be important to continue tracking how new tools are being used and 
using what is learnt in a process of continuous improvement.  
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Readiness for Adoption 
 

Any plans for the application of advanced data analytics for food safety and 
authenticity risk monitoring and mitigation by the FSA need to be considered in the 
light of a number of factors that may impact the prospects for success. Based on the 
evidence gathered in this study, a list of relevant factors is given below:  

Strategic Value: address food safety or authenticity risks that are important to the 
FSA as a food system regulator and are: (a) currently a known gap; or (b) predicted to 
change within next 2-5 years; (c) have high impact as measured by (i) severity and/or 
(ii) scale; 

Dataset Availability: (a) official, open, good quality; or (b) official or proprietary, 
negotiable access, good quality; (c) harvestable, requiring little cleaning; 

Ethical and Legal Compliance: methods and development processes that can 
demonstrate compliance with the recently published ATI ethical framework, i.e., (a) 
process and (b) outcome transparency, including explainability; 

Opportunity Score: a summary of factors 1-3 reflecting potential benefits, e.g., (a) 
bringing enhancements to existing practice, including improving robustness, enabling 
more timely interventions and/or reducing costs; or (b) establishing new practices and 
competencies; 

Method Availability: maturity of methods as evidenced by demonstrated practical 
value in similar applications and supported by high quality software tools; 

FSA PoC or Sprint Projects: well-defined use case, satisfactory results in terms of 
performance and so qualify as potential minimum viable product; 

Generalisability: have potential to be applied to other use cases with minimal 
additional effort. 

Analytics Score: a summary of factors 5-7, reflecting operational readiness of the 
method(s). 

Overall: a summary of opportunity and analytics scores to present an overall indication 
of the readiness for adoption. 

 

For each of these criteria we propose a three-point scale: 1 – not met; 2 – likely to be 
met within 2-5 years; 3 – met now. These are then used to score the each of the 
recommendations listed in Section 8 (see Table 1). 
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Recommendations 
 
Below, we summarise a series of recommendations that we conclude will help facilitate 
the FSA in taking forward its goal of achieving a transformational impact on food safety 
and authenticity.  

The recommendations are based on a synthesis of the evidence gathered from the 
literature review, interviews and two policy Delphi rounds.  

Each recommendation begins with a statement in generic terms of the application or 
methods the recommendation endorses. This is then broken down into one of more 
specific projects that would enable the FSA to make progress in meeting it.  

 

1. Enhanced dashboards: building on PoC and Sprint projects.  

a) Type 1 dashboards, such as “Understanding olive oil trade patterns”, and Type 
3 dashboards, such as the “Predicting aflatoxin risks” dashboard, have the 
potential to be generalisable to other food commodities. 

b) Type 2 surveillance dashboards, which extract information from unstructured 
text, such as “Understanding allergy related discussions using social media”, 
“Detection of Norovirus outbreaks from Twitter posts” and “Food/hazard 
extraction from media articles“, would be enhanced through the use of 
advanced NLP-based information extraction methods to reduce false positives 
and negatives. Deep learning methods using word embeddings, for example, 
have advanced the state-of-the-art significantly [81]. While acknowledging the 
challenges of using high frequency, noisy data sources, advanced NLP 
information extraction methods may also have value for nowcasting of, for 
example, foodborne and infectious disease outbreaks [82]. 

c) The same Type 2 dashboards could be promoted to Type 3 by adding 
prediction capabilities. For example, named entity recognition [83] and 
extraction of location information [84] would enable the use of spatial analytics 
to trace sources and to predict the spread.  

 

2. Horizon scanning: early warning of unanticipated and unknown risks.  

a) Information extraction from scientific literature and reports on food safety can 
provide support horizon scanning for the early detection of new and emerging 
potential risks. More generally, this would support the conduct of systematic 
reviews for learning lessons from past food safety incidents [85].  

Such methods are already used by companies offering risk assessment 
services to businesses, including FBOs. This is the kind of application where 
collaboration with an external partner may be preferable to pursuing an in-
house solution. For example, the National Centre for Text Mining (NaCTeM)13 
has developed a suite of tools that could be customised to deliver this kind of 
capability.  

 
13 http://www.nactem.ac.uk/ 

http://www.nactem.ac.uk/
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3. Intelligence-driven inspections: better tools for a range of inspection scenarios. 

a) Intelligence-driven inspection was the focus of a recent PoC project, which 
used records covering multiple hygiene factors, physical conditions of the 
business and other variables with a convolutional ANN. There is scope for 
building on this by experimenting with different deep learning models (e.g., 
recurrent ANNs) and additional datasets. Regarding the latter, while noting 
quality challenges, Delphi panellists were agreed that there would be value in 
exploring the use of signals extracted from UGC sources.  

b) 65% of ‘dark kitchens’ are estimated to be unregistered (compared to 98% 
percent registration for traditional restaurants) and no effective system exists to 
verify their location. A recent PoC project used data from websites to build a 
classifier to assist in their detection. No details of the methods used or of the 
performance were available at the time of writing, but it is likely there would be 
scope for developing this further by experimenting with deep learning methods 
and new datasets. 

c) Application of deep learning for intelligence-driven abattoir inspections using 
acoustic and image data. There are many candidate methods. A survey can be 
found in [41, 86-7]. 

Any intelligence-driven inspection system must be seen to be fair and transparent by 
both FBOs and the public. Again, before any tools may be employed, explainability 
must be satisfied. 

Bayesian methods provide a natural way of encoding causal relationships and so offer 
the means to satisfy the requirement for explainability. Many current machine learning 
methods have their Bayesian analogues. As other explainability techniques are 
developed, a wider range of data analytics methods, including deep learning, will also 
become viable options. 

 

4. Detection and Prediction of food crime: generalisation and development of 
more advanced tools.  

a) FSA projects in this area have focused on a specific food commodity that is a 
known fraud risk. They have potential for generalisation in two distinct ways: (i) 
application to other known food fraud risks; (ii) for the discovery of fraud risks 
in commodities previously not suspected. 

b) These tools look for unusual trends or anomalous patterns in trade data that 
may be signatures of food crime. Time series models using trade flows and 
commodity prices have shown potential [43]. Earlier detection would benefit 
from use of more timely data, for which nowcasting offers a potential solution. 
An example is the use of ship tracking data to generate near real-time 
information on trading networks that underlie supply chains [88-9]. Bayesian 
methods have demonstrated good performance in a wide range of nowcasting 
applications.  

c) Advanced predictive capability for food crime requires powerful methods 
together with a wider range of datasets, e.g., INFOSAN, financial transactions, 
commodity prices, weather conditions, infectious disease outbreaks, supply 
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chain disruptions and geopolitical unrest. Bayesian Networks and Graph-based 
methods would be appropriate choices. 

 

5. Mitigation of food-related incidents  

A key element of mitigation response and planning is the identification of the source 
of incidents such as foodborne disease outbreaks among consumers [90-91], animals 
[92] and predicting spread and severity. 

a) Spatial analytics techniques can assist in the identification of sources for 
mitigation response and in forecasting the likely incident spread for mitigation 
planning [92].  

b) Bayesian networks are one of several network and Graph-based methods that 
can be used to predict how food safety risks may propagate across a network 
[93] and can be used to determine the source of a foodborne disease outbreak 
[94]. 

c) The falling costs of WGS is opening up opportunities for its use in food safety 
and authenticity risk management. However, WGS data is of high 
dimensionality14, which makes analysis using conventional methods time 
consuming. Machine learning provides a solution to this problem and enables 
accounting for individual effects that are dependent on interactions with other 
genetic and environmental factors [95]. 

A range of machine learning methods have shown promise for increasing the 
speed and accuracy of WGS data analysis for tracing outbreaks of foodborne 
diseases, including Support Vector Machines, Random Forests, Bayesian, 
ANNs and K-means clustering [96-7]. 

Decision trees have been used with WGS data to predict pathogen 
antimicrobial resistance [62]. Bayesian methods have been used with WGS 
data to predict properties such as risk of diseases in crop and animals [93] and 
human health risk at the population level from foodborne pathogens. 

 

6. Modelling food system resilience 

Experience gained from projects outlined above provides the foundations for more 
ambitious projects. Assuming that access to good quality, timely datasets from across 
the food supply chain continues to improve, then it will be feasible over the next 5 
years to model the behaviour of the food supply chain and its response to different 
kinds of ‘shock’. This would have significant value for predicting and mitigating the 
impact on food safety and authenticity, and for policymaking for improving supply chain 
resilience. However, this would require cross-government collaboration. 

Access to a wide range of datasets, including food industry datasets, will be important. 
The COVID-19 pandemic may help to incentivise FBOs and government departments 
towards a greater sharing of data, as well as encouraging closer cooperation in 
developing tools. 

 
14 Commonly referred to as “the curse of dimensionality”. 
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Table 1 is a summary of how the criteria identified under the section on readiness for 
adoption may be mapped onto to these recommendations. The ‘Overall’ column 
grades each challenge in terms of its readiness to be taken forward within the next 2-
5 years on the assumption that the criteria are equally weighted. We have used our 
own judgement, based on what we have learnt during the conduct of this study, in 
choosing the values assigned to criteria such as strategic value and opportunity score. 
However, we recognise that the FSA is much better placed to decide accurate scoring. 
We hope to provide a readily accessible means to articulate deployment opportunity 
to others. 

It should be noted that, in many cases, it is not possible to recommend a specific data 
analytics method as there are a number that may be applicable. This means that 
experimentation will be necessary to identify the best performing. 

Many statistical methods enable modelling (with explanations but a degree of 
speculation) of parts of a system where data is not retrievable or is costly to obtain. 
Hence, it may be important to position new data analytics methods, such as deep 
learning and natural language processing, so that they complement current methods.  

Bayesian methodologies are one way to deliver this. Embedding expert judgment in 
terms of setting proper prior distributions can have very helpful effects in tightening 
the inferences that can be made from a particular dataset. By removing possibilities 
that are implausible for a given domain, data centric evidence can be much more 
informative and may help tighten confidence bands significantly. The key issue is the 
availability of such judgements and the need for transparent guidance where these 
exist. 

Finally, as with data analytics applications generally, there will be a need to regularly 
re-calibrate – and sometimes rebuild – models as the behaviour of the food supply 
chain and the actors that constitute it change. 

 



 

Potential 
applications for 
advanced 
analytics  

Strategic 
Value 

Dataset 
Availability 

Ethical and 
Legal 
Compliance  

Opportunity 
Score  

Method 
Availability 

PoC 
or 
Sprint 

Generalisability  Analytics 
Score 

Overall 

Enhanced 
dashboards 

3 3 a:3 

b:2 

c:2 

a:3 

b:2-3 

c:2-3 

a:3 

b:2 

c:2 

a:3 

N/A 

N/A 

a:3 

b:3 

c:2 

a:3 

b:2 

c:2 

a:3 

b:2 

c:2 

Horizon scanning a:3 a:2-3 a:3 a:3 a:3 N/A a:3 a:3 a:3 

Intelligence-driven 
inspections 

3 a:2-3 

b:2-3 

c:2 

2 a:2-3 

b:2-3 

c:2 

2 a:3 

b:3 

c:2 

a:2 

b:1 

c:1 

a:2-3 

b:2 

c:1-2 

a:2-3 

b:2 

c:1-2 

Detection and 
prediction of food 
crime 

b:3 b:2 b:3 b:2-3 b:2-3 b:3 b:2 b:2-3 b:2-3 

Mitigation of 
incidents 

a:3 

b:3 

c:3 

a:3 

b:3 

c:2 

a:2-3 

b:3 

c:3 

a:2-3 

b:3 

c:2-3 

a:3 

b:3 

c:3 

N/A a:2 

b:2 

c:2 

a:2-3 

b:3 

c:3 

a:2-3 

b:3 

c:2-3 

Modelling food 
system resilience 

3 2 2-3 2-3 2-3 N/A N/A 2-3 2-3 

 

Table 1: Classification of project readiness (3 – met; 2 – met within 2-5 years; 1 – not met. Prefixes a, b, c, etc., refer to the 
labelling of projects within each recommendation). Factors contributing to both the ‘Opportunity Score’ and ‘Analytics Score’ combine 
to reflect the overall readiness for adoption. 

Note: Where a range of values is shown, this reflects how they may be expected to depend on which of several possible projects 
under each heading is selected.
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Appendix A: List of FSA Proof of Concept (PoC) and Sprint 
Projects 
 

Understanding Olive Oil trade patterns and anomalies 

Predicting Vibrio infections using climate data 

RASFF analysis to identify UK specific hazards 

Identifying anomalies in global trade patterns with the UK 

Understanding allergy related discussions using social media 

Online display of FHRS ratings 

Meat mass balance analysis for detection of anomalies 

Risk likelihood dashboard 

Climate risk (aflatoxins) 

Climate risk (pesticides) 

Meat establishments dashboards 

Detection of unregistered FBOs 

Signal prioritisation dashboard 

Using non-UK RASFFs to predict UK RAFFs 

Trade routes and volumes 

Predicting incidents of wine fraud in Europe 

Consumer attitudes to food pricing extracted from social media 
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Appendix B: Summary of Policy Delphi Findings 
 

Introduction 
 
This appendix sets out the key findings of the policy Delphi deliberation undertaken as 
part of the research into the uses of advanced data analytics in the UK food and drinks 
sector. It provides a more detailed summary responses. 

Overview 
 
This policy Delphi drew upon initial interviews with key informants in the regulation of 
food standards, FBOs and in academic research to identify 34 prospective panellists 
who were then invited to participate. Of these, 19 (56%) responded to the first-round 
questionnaire, generating a panel falling within the 10 – 50 range of respondents 
regarded as ideal by policy Delphi methodologists. These 19 respondents were invited 
to respond to the second round and 14 accepted, an attrition rate of 26% but still 
producing a panel within the ideal range for deliberation. The profile of respondents in 
each of these two rounds is summarised in Table B1. 

 

Table B1: Profile of panellists in first and second round of the policy 
Delphi. 

 

Type of Expertise & 
Experience 

No of panellists recruited Pseudonyms for 
anonymous reporting 

1st Round 2nd Round 1st Round 2nd Round 

Non-Governmental 
Organisations concerned 
with facilitating 
collaboration between 
government, business 
and academia in 
addressing issues of food 
safety (NGO) 

1 1 NGO1 NGO1 

Digital commercial 
organisations concerned 
with promoting the uptake 
of digital technologies by 
government and business 
(DIGICOM) 

2 1 DIGICOM1 

DIGICOM2 

DIGICOM2 

Government food safety 
regulator (FSR) 

2 1 FSR1 

FSR2 

FSR2 

Food business 
organisations concerned 
with the safety of food 

7 5 FBO1 

FBO2 

FBO2 

FBO3 
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produce and its retail 
(FBO) 

FBO3 

FBO4 

FBO5 

FBO6 

FBO7 

FBO4 

FBO6 

FBO7 

Academics involved in 
researching trends in food 
security (ACA) 

7 6 ACA1 

ACA2 

ACA3 

ACA4 

ACA5 

ACA6 

ACA7 

ACA1 

ACA2 

ACA3 

ACA4 

ACA5 

ACA6 

 

TOTAL 19 14   

 

 

This policy Delphi had two rounds. In keeping with the broader objectives of this report, 
panellists were asked the following semi-structured questions in the 1st round aimed 
at clarifying the principal issues about using advanced data analytics to enhance 
safety and authentication in the UK food and drinks sector: 

Question 1: In your opinion, what are the three biggest risks to food safety and 
authenticity in the next 2-5 years? 

Question 2:  Are you aware of any examples where advanced data analytics 
has already helped to improve the management of any of the risks you have 
listed above? 

Question 3:  In your opinion, in which 2-3 areas are advanced data analytics 
likely to have the biggest impact within the next 2-5 years on the management 
of food safety and authenticity risks? 

Question 4:  In your opinion, what are the three key challenges facing the food 
sector for maximising the benefits of advanced data analytics in the 
management of food safety and authenticity risks? 

As elaborated in the summary of key findings, answers to this 1st round identified 
seven prospective uses of advanced data analytics and five associated scenarios 
about their likely adoption.  

In the 2nd round, a more structured questionnaire asked panellists to rank the technical 
and political feasibility of these prospective uses and sought their agreement with, 
predominantly sceptical, views on their likely adoption. Consequently, this deliberation 
helped to clarify some of the prospective challenges as well as opportunities for the 
adoption of advanced data analytics in this sector and these are elaborated in the 
following discussion of key findings from the policy Delphi. 
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Key Findings  
 

Panellists identified six areas in which they thought advanced data analytics would be 
likely to have the biggest impact on food safety and authentication in the UK in the 
medium term:  

1. creating a digital twin of the food system;  

2. the use of global trade data;   

3. development of the Food Hygiene Rating Scheme (FHRS);  

4. combining diverse datasets;  

5. use of Internet of Food Things (IoFT) sensors; and 

6. automated detection of anomalies. 

 

The 2nd round questionnaire presented respondents with a verbatim report of the 
responses from all panellists to the 1st round questionnaire and then asked them to 
score the technical and political feasibility of each of these uses on a Likert scale of: 
definitely feasible, probably feasible, may or may not be feasible, probably unfeasible, 
definitely unfeasible. Panellists were also invited to report the reasoning behind their 
rating in free text.  

This produced some interesting clustering of opinion, including outliers that challenged 
the weight of agreement amongst other panellists. This is further illuminated by the 
free text reasoning provided by some panellists for their judgements.  

 

1. Creation of a digital twin of the food system 

Opinion about the technical feasibility of creating a digital twin of the food system was 
spread amongst three basic clusters of opinion and two outliers. One respondent who 
felt it was definitely feasible, argued: 

“Technically this is possible and there are a number of projects where this is happening 
(digital city twin) or where this has been proposed (digital twin of Jersey.) This has 
been reliant on willing participants from across the system. For a roll-out then a data 
framework would need to be put in place to create confidence and maintain sensitivity.” 
(FBO2) 

Conversely, another panellist from the food business sector thought this proposal 
definitely unfeasible, arguing a digital twin would be: 

“Impractical due to fragmented nature of the food system.” (FBO7) 

The remaining panellists clustered around those who thought it probably feasible, if 
the focus is upon specific sub-sectors rather than the food system in its entirety, and 
those who think it probably unfeasible, thinking it: 

“Very hard to achieve with accurate results. Supply chain is fast moving and ever 
changing whilst being extremely complex.” (FBO3) 



 31 

Opinion about the political feasibility of this use of advanced data analytics was less 
certain still, thinking it may or may not be feasible depending on ‘buy-in’ amongst 
competitor businesses and across different jurisdictions. 

 

2. Analysis of global trade data to anticipate food safety problems and 
traceability  

Opinion on the technical feasibility of using global trade data to predict risky food-
country combinations and improve the traceability of food commodities clustered 
around those thinking it probably, if not definitely, feasible although there is a need to 
further improve the quality, granularity and timeliness of this data. A more equivocal 
view argued that: 

“The most serious risks are the ones that are hardest to predict.” (ACA5) 

Opinion about the political feasibility of using global trade data in this way revealed a 
wider distribution of opinion, with one academic arguing it definitely feasible, the: 

“Only barriers are the risk mitigations around predictions. Litigation?” (ACA6) 

Others thinking it probably feasible noted the changing strategic context of global trade 
and the COVID-19 emergency which hit during the 2nd round collection of data for this 
research, a food standards regulator argued there are: 

“No particular reasons to suspect public or stakeholder opposition but consideration 
of priorities may be necessary in the current COVID-19 operating environment.” 
(FSR2) 

More sceptical panellists noted that, in this changing strategic context: 

“This will be an interesting area of focus in a ‘post COVID-19’ environment where food 
security and traceability is key to public health. It is uncertain at this point how political 
attitudes will change with respect to traceability, but an opportunity clearly exists here.” 
(NGO1) 

An academic panellist also noted that:  

“Some countries might argue that algorithms are biased against them.” (ACA2) 

Other academic panellists thought this usage probably unfeasible given the lack of 
trust around data sharing, the financial costs of accessing such data and the problem 
that such data might cultivate a false sense of security. 

 

3. Developing FHRS into a more intelligence-led process  

Again, opinion about the technical feasibility of this use of advanced data analytics 
clustered around those thinking it definitely or probably feasible with some arguing 
there is already the technology for predictive analytics using this and other imaginative 
sources of information, including social media: 

“Availing of predictive analytics based on available public and official data would be 
an opportunity to focus resources on targeted inspections (e.g. data can be scraped 
from TripAdvisor or obtained from other regulatory agencies).” (FBO4) 

A more equivocal panellist questioned: 
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“Who’s intelligence? The most serious risks are the ones about which it will be hardest 
to obtain accurate information.” (ACA5) 

This panellist reiterated this point in relation to the political feasibility of using the FHRS 
in this way. More equivocal panellists noted potential resistance to the collection of the 
data that would be needed, particularly the absence of a public education campaign 
about the reasons for this kind of surveillance: 

“UK FSA and others have issues in collecting the Human Intelligence (HUMINT) to 
populate such a process. Food organisations would take a lot of persuasion and the 
public needs to be educated about what is required.” (ACA4) 

“Political difficulties may stem from the transparency of any prioritised inspection 
regime (which currently will mainly be driven by what the last FHRS rating was).” 
(FSR2) 

Even so, the weight of opinion on the panel clustered around the political feasibility of 
this suggestion, given the high regard and trust for the FHRS amongst good 
businesses and the general public: 

“The FHRS in its current form is well known and appreciated by the wider public and 
its improvement is likely to be supported.” (ACA2) 

“The Food hygiene rating scheme is widely accepted standard and system already 
developed. It has been implemented now long enough so that businesses where 
applicable have had time to address their system deficiencies. Technology would now 
be received as a means to support what is now perceived as a quality mark.” (NGO1)  

 

4. Combining diverse datasets to improve quality and timeliness of predicting 
threats to food safety and authenticity 

Opinion on the technical feasibility of combining data from administrative authorities, 
commercial sources and UGC, such as social media, satellite images and so forth, 
clustered around those who thought it definitely feasible, indeed already happening, 
and those thinking it probable, although with some reservations about the credence 
that can be given to some data sources: 

“The accuracy and resolution of prediction is dependent on the quality and frequency 
of the data. Research is needed on data cleansing, especially with regard to social 
media.” (ACA6) 

Those questioning the technical feasibility of this, noted problems in integrating diverse 
data sets: 

“Unlikely to be successful without very granular high-quality data. Training data is 
limited and difficult to obtain. Relationships between risks and data are likely to be 
complex and difficult to model.” (ACA2) 

“This is a very complex fusion exercise and the matching of signals of different shapes, 
sizes and significance will require a great deal of expert input into calibrating 
algorithms to do even some of the analysis or, alternatively, will continue to require 
human interpretation to complete the value add.” (FSR2) 

One outlier opinion thought such data integration definitely unfeasible, arguing:  

“Satellite images will not tell you want is happening under cover or in sheds, abattoirs 
or warehouses.  Social media are notoriously unreliable.” (ACA5) 
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This panellist reiterated this point in arguing such data integration is definitely politically 
unfeasible. More equivocal panellists noted the challenge of sourcing key datasets 
needed for the corroboration of less robust sources such as social media: 

“Issue is actually sourcing the data and turning it into meaningful and timely data. Most 
food businesses just want the ‘top 5 I need to worry about this week’.” (ACA4) 

Even so, a majority of the panellists were more optimistic about the political feasibility 
of combining administrative, commercial and user-generated data sources: 

“This should help a number of challenges that the food industry has today and needs 
coordinating at a national and if possible global level.” (FBO2) 

“No real political problem. The challenge would be around what level of investment 
could be justified and the need to show proof of concept.” (FBO4) 

 

5. Embedding Internet of Food Things (IoFT) sensors across food supply chain 
to detect micro-biological risks 

Opinion on the technical feasibility of using IoFT sensors to detect micro-biological 
risks is distributed across three main clusters. Those thinking it definitely feasible 
argue the technology exists but there are barriers to adoption. The second cluster of 
opinion thinking this usage probably feasible, argue the technology is getting there 
albeit there is need for further research and development. This usage of IoFT is: 

“More and more feasible as sensors become cheaper and more ubiquitous.  However, 
not all the data will be accessible and that is the challenge. Pilot projects needed.  
However, taking the micro example, it could facilitate ecosystem modelling whereby 
the model can predict hazards.” (FBO4) 

“Again, technically feasible at a proof of concept level. Plenty of examples in research 
projects from around the world have existed for some time. Connecting monitoring 
technology with early warning systems technically possible. There would be technical 
(i.e. standards, API, interoperability) challenges in integrating systems assuming it was 
not one business delivering all of the elements. For a real world, i.e. trustworthy, 
solution a high degree of objective assurance would be needed, therefore 
necessitating a layer of validation across the systems to address risks such as 
tampering, untested devices, fraud etc.” (ACA1) 

More equivocal panellists identify uncertainty about the level of R&D that will be 
needed, the financial costs and incentives to develop, implement and monitor such 
sensors:  

“May need incentivising as industry may be reluctant to invest. Needs to be linked to 
clear financial and other business benefits.” (ACA6) 

“Easy to do using existing technology and also already used but have scored to a 3 
due to cost constraints.” (FBO3) 

Again, one panellist (ACA5) reiterated an objection to the feasibility of this use of the 
IoFT on both technical and political grounds: 

“And who will ensure that they are not being interfered with?” (ACA5) 

This, however, was very much an outlier opinion along with the more equivocal 
reasoning of another of the academic panellists: 
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“May be political and industry concerns about surveillance and scale of processes 
needed. Public may need convincing that sensors on food and packaging are not 
harmful.” (ACA4) 

Otherwise the remaining, overwhelming majority, of the panel thought this use of the 
IoFT politically feasible: 

“The political challenges, whilst achievable, would build upon the practical ones. 
Namely quality assurance, liability, responsibility, unintended consequences (if a 
product does not fail a check does that mean it is safe?). Who carries responsibility 
for the devices, the checks, the data, the modelling, etc.? That said, this is clearly 
something worth attempting, and learning from the process.” (ACA1) 

“Given that this is most likely to be applied to food supply chains serving restaurant 
multiples, or big supermarkets, consumers might see benefit here (perhaps again 
dependent on how much of the cost migrates to them in end product prices).” (FSR2) 

“The sensor technology, connectivity and analytics capability exist to enable the rollout 
of a IOFT strategy. Food production supply chains will require efficiency and early 
disruption signalling. Some challenges will exist on global supply chains but this very 
possible.” (NGO1) 

 

6. Automated detection of anomalies in food products  

Opinion about the technical feasibility of automating detection of anomalies in food 
products clustered around panellist type: FBOs, who thought it definitely feasible; 
academics, who thought it probably unfeasible; and a mixture of other panellists who 
were equivocal. The FBO advocates reasoned that automated detection was 
technically feasible because: 

“There are multiple tests taken place across the value chain globally. Testing 
standards are in place. This needs to be a global database that is interoperable and 
can be integrated along the value chain.” (FBO2) 

“Technically feasible using, e.g., full-scan LC-MS or fingerprinting technologies” 
(FBO4) 

By contrast, the academic critics of automated detection argued: 

“Just too many items in too many supply chains?” (ACA4) 

“This will be problematic with many processed foods, the ingredients of which vary 
with input prices.” (ACA5) 

More equivocal panellists acknowledged this as a likely future direction whilst 
acknowledging the technical complexity of the task: 

“Whilst a good idea, that builds on great knowledge of components and testing 
processes, food is not pharma. Not all food is created in laboratory conditions. The 
ideas are good and definitely worth pursuing. Another significant risk is post-testing 
contamination. Therefore, all tests would have to be presented with caveats.” (ACA1) 

“Lots of research in this area but very difficult. Spectroscopic techniques are promising 
but the challenge is the complexity of food products and performing measurements in 
non-laboratory environments.” (ACA3) 
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In the 2nd round, panellists were also asked to rate their agreement with five future 
scenarios in the use of advanced data analytics in the UK food and drinks sector over 
the medium term which, again, had been elicited from responses to the more open-
ended 1st round questionnaire (see Table B2).  

Other than the final scenario, regarding prospects for the automation of analysis of 
food safety and authenticity, a majority agreed with the forecasts. Although, even here, 
there were analytically significant clusters and outliers of opinion in disagreement with 
them. Further insight into this clustering of opinion was provided by those panellists 
who used the opportunity to record the reasoning behind their responses in free text.  

 

Table B2: Scenarios for use of advanced data analytics in UK food and 
drink sector. 

 

Scenario Forecast 

Analytical Skills The supply of advanced data analytics skills for food safety 
and authenticity risk monitoring will continue to lag behind 
the demand, given education and training needs and the 
competition for these skills from multiple sectors, such as 
MedTech, FinTech and manufacturing. 

Data Monetisation Unless data on food safety can be monetised there will 
continue to be an insufficient supply of data of suitable 
quality for advanced analytics and thus of data-driven 
capabilities, as most food business organisations are low 
profit margin operations with a lack of sufficient resources 
to improve the capture and analysis of relevant information. 

Risk Aversion Advances in food safety and authenticity risk analytics will 
continue to be hampered by concern for the economic 
sensitivity of FBO data. 

Predictive Modelling Within the next five years, advanced data analytics will have 
access to collated, real-time, global datasets on, inter alia, 
commodity prices, international trade, adverse weather 
conditions, infectious disease outbreaks and geopolitical 
unrest, to predict effectively the risks of food safety and 
authenticity incidents. 

 

 

Analytical Skills 

This first, rather pessimistic, scenario forecast the continued lag of the requisite skills 
for data analysis in the service of improved food safety and authentication, given the 
education and training required to close the skills gap and given the intense 
competition for these analytical skills from wealthier and more lucrative sectors of the 
economy, especially FinTech, MedTech and manufacturing. The clustering of opinion 
was overwhelmingly in agreement with the likelihood of this forecast, with 86% 
agreeing: 
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“Research that I have been involved in has indicated that there is a gap between the 
skills that are needed and what is being provided by teaching and training 
establishments. This therefore puts a price premium on those with such skills, 
inevitable motivating practitioners towards fintech etc. Furthermore, the skillsets 
required are also evolving, so continuous learning is required. Therefore, career 
pathways with opportunities for access to lifelong learning will also prosper. Thirdly, 
data science practices also require interdisciplinary collaborative practices. From 
strategic leaders to those involved in implementing data capture solutions, as well as 
data stewards and visualisation experts all need to work together. So, it is as much 
about upskilling as recruitment.” (ACA1) 

A small cluster was more equivocal, noting some grounds for optimism from a food 
safety regulator: 

“This is a competitive skills area, but food can be an appealing area of business with 
broad relevance to the lives and lifestyles of all of us. Acknowledging the requirement 
for competitive salaries, or in government for the inclusion of this area of business 
within relevant high potential development streams, could increase the presence of 
these skills in this area.” (FSR2) 

 

Data Monetisation 

This, similarly pessimistic, scenario forecast a continued lack of data of sufficient 
quality to support the advanced analytics that could improve food safety and 
authentication unless a way can be found to monetise this data and thus provide its 
key providers, primarily food business organisations with limited additional resources 
to invest in data collection, with an incentive to invest in advanced data analytics. Here 
the clustering of opinion was more dispersed with half of the panel agreeing that this 
is likely to remain the case in the absence of clear commercial benefit or legal 
compulsion to collect and provide such data: 

“Whether it is through the supply in return of actionable insight (leading to business 
and perhaps financial benefits) or in the demonstration of social responsibility (and the 
protection of public health and of consumers broader interests), data sharing will need 
either to be legally mandated or articulated as clearly good for business. It may also 
depend on the specific problem around which data is being collected (and the scale of 
enterprise from which the data is being requested).” (FSR2) 

A significant minority (29%) of the panel disagreed with this forecast, arguing that: 

“Food businesses can be incentivized in other ways for instance by increased 
consumer confidence. Also disagree that the problem is the availability or quality of 
data. There are currently many data sets with potential uses in food safety provided 
they are analysed/modelled properly.” (ACA2) 

 

Risk Aversion 

This scenario forecasts a situation in which advanced data analysis will be frustrated 
by the reasonable aversion of FBOs to the risk of undermining their market 
competitiveness. Here an interesting split occurred between an overwhelming majority 
(79%) agreeing with the forecast: 
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“True, however, such inclinations can be overcome by planning implementation 
strategies that incorporate some behavioural thinking to address and pre-empt such 
legitimate concerns.” (ACA1) 

“Fiscal and hygiene data on an owner of an FBO is very valuable to forecast and 
project future standards. Great sensitivity is required to persuade FBOs to share from 
fear of data leakage.” (DIGICOM1) 

No panellist equivocated but a small cluster disagreed with this forecast, arguing: 

“The problem is not data availability it is the insufficient investment and competence 
in analysing and modelling currently available data sets.” (ACA2) 

“If value can be proven, and insight provided to drive improvement then this should 
make the system more efficient. There are examples of this happening already Food 
Industry Intelligence Network. This needs to be broader but is a case study to show it 
can work!” (FBO2) 

 

Predictive Modelling 

By contrast to the foregoing scenarios, this forecast expressed more optimistic 
responses on prospects for advanced data analytics that were elicited from responses 
to the 1st round questionnaire. It asked the 2nd round panellists to agree or disagree 
with the likelihood that within the next five years predictive modelling will have reached 
a level of sophistication capable of using real-time, global, datasets on, inter alia, 
commodity prices, trade, adverse weather conditions, infectious diseases, geopolitical 
unrest to effectively anticipate risks to food safety and authentication. There was a 
clear majority (71%) in agreement with this forecast. These more optimistic views 
argued: 

“This is very probably true; however, the world is changing fast, some would say at an 
exponential rate. Therefore, models that are based on the past, even with this rich 
harvest of data, may not be capable of accurately predicating the future. Furthermore, 
even with such risk analysis – as with the current pandemic – would there be an 
appetite to fully invest in measures to fully mitigate the risk?” (ACA1) 

“The data sets exist. Data layering is possible and predictive modelling is in practice. 
So, it should just be a case of applying the technologies to these data sets and growing 
the model.” (FBO2) 

“This is an ambitious but just about plausible prediction and I assess that there will be 
significant movement in this direction, perhaps even more so following a period of 
reflection and necessary innovation after COVID-19. My reservations expressed 
around item 5, however, may put a ceiling on the precision of this modelling.” (FSR2) 

“I have no evidence, but the pace of modelling is increasing. The key problem is not 
the modelling but the underlying datasets, the comprehensiveness and veracity of 
data, and the orderliness and cleanliness of the data.” (ACA4) 

Even so, a minority of panellists disagreed with this forecast, one arguing: 

“The interactions of these factors are complex and hence very challenging to model 
mathematically. Even if such data were to become available acquisition, storage and 
processing of data is likely to be challenging.” (ACA2) 

 



 38 

Final Observations 
 
Three panellists took the opportunity of a concluding free text question inviting any 
further, final, observations on prospects for the use of advanced data analytics in food 
safety and authentication. In addition to acknowledging the value of this deliberative 
exercise and a need to sustain the dialogue between government, commerce and 
academia in this field, these responses emphasised the centrality of developing 
datasets that are ‘inter-operable’, that can be meaningfully related to one another, and 
to the huge impact of the COVID-19 emergency which hit during the 2nd round of this 
policy Delphi.  It is suggested the COVID-19 emergency will accelerate trends that 
were already under way, including the impact of eCommerce and home delivery on 
the governance and regulation of food standards, especially those associated with 
‘Dark Kitchens’ (on-line food suppliers whose provenance is unclear and who are not 
open to inspection). 
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